Данный классический труд содержит обстоятельное современное введение в машинное обучение (включая глубокое обучение), рассматриваемое сквозь объединяющую призму вероятностного моделирования и байесовской теории принятия решений. Включен базовый математический аппарат (в т. ч. элементы линейной алгебры и теории оптимизации), основы обучения с учителем (включая линейную и логистическую регрессию и глубокие нейронные сети), а также более сложные темы (в т. ч. перенос обучения и обучение без учителя). Упражнения в конце глав помогут читателям применить полученные знания, а в приложении имеется сводка используемых обозначений.
В основу издания легла вышедшая в 2012 году книга Кэвина Мэрфи "Machine Learning: A Probabilistic Perspective". Однако это совершенно новая работа, отражающая многие достижения, случившиеся в этой области за последние 10 лет.
У этого товара нет ни одного отзыва. Вы можете стать первым.