(029)696-52-88   (033)696-52-88   bestbooksby@gmail.com 

ПРИЕМ ЗАКАЗОВ ПО ИНТЕРНЕТУ - КРУГЛОСУТОЧНО.
В случае отсутствия книги на сайте возможен заказ по телефону с 10:00 до 18:00 Пн-Пт. 

ЗАКАЗЫ ПРИНИМАЮТСЯ НА 29.11.2024 г. 
НАЛИЧИЕ КНИГ УТОЧНЯЙТЕ ПО ТЕЛЕФОНУ (В РАБОЧЕЕ ВРЕМЯ) ИЛИ ПО ЭЛЕКТРОННОЙ ПОЧТЕ


Распродажа до 70%

Машинное обучение.Карм.справ.Кр.рук.стр.на Python

0 отзывов
ISBN 978-5-907203-17-4
Автор Харрисон Мэтт
Издательство Диалектика
Год 2020
Переплет обл
Формат 84х108/32
Стр. 320
ID 04Л4-30
ID2 749460
Машинное обучение. Карманный справочник. Краткое руководство по методам структурированного машинного обучения на Python. В книгу Машинное обучение: карманный справочник, включены подробные примеры и комментарии, которые помогут вам оперативно ориентироваться в основах структурированного машинного обучения (МО). Автор, Мэтт Харрисон, предлагает ценный справочник, который вы можете использовать как дополнительное пособие при обучении МО и в качестве удобного ресурса, когда погружаетесь в ваш следующий проект машинного обучения. Приведенные фрагменты кода имеют такой размер, чтобы их можно было использовать и адаптировать в ваших собственных проектах МО. Книга, идеально подходящая для программистов, аналитиков данных и инженеров искусственного интеллекта, содержит обзор процесса машинного обучения и знакомит вас с классификацией структурированных данных. В книге рассматриваются различные библиотеки и модели, их компромиссы, настройка и интерпретация. Кроме всего прочего вы... Машинное обучение. Карманный справочник. Краткое руководство по методам структурированного машинного обучения на Python. В книгу Машинное обучение: карманный справочник, включены подробные примеры и комментарии, которые помогут вам оперативно ориентироваться в основах структурированного машинного обучения (МО). Автор, Мэтт Харрисон, предлагает ценный справочник, который вы можете использовать как дополнительное пособие при обучении МО и в качестве удобного ресурса, когда погружаетесь в ваш следующий проект машинного обучения. Приведенные фрагменты кода имеют такой размер, чтобы их можно было использовать и адаптировать в ваших собственных проектах МО. Книга, идеально подходящая для программистов, аналитиков данных и инженеров искусственного интеллекта, содержит обзор процесса машинного обучения и знакомит вас с классификацией структурированных данных. В книге рассматриваются различные библиотеки и модели, их компромиссы, настройка и интерпретация. Кроме всего прочего вы изучите методы кластеризации, регрессии и уменьшения размерности. Основные темы книги Классификация с использованием набора данных Titanic Как очистить данные и справиться с их недостатком Разведочный анализ данных Общие этапы предварительной обработки с использованием выборки данных Выбор признаков, полезных для модели Выбор модели Оценка метрики и классификации Примеры регрессии с использованием нескольких методов машинного обучения Метрики для оценки регрессии Кластеризация Уменьшение размерности Конвейеры Scikit-learn При использовании этой книги предполагается знание языка программирования Python. В книге демонстрируется, как использовать различные вспомогательные библиотеки Python для решения реальных задач МО. Эта книга не заменит учебный курс по МО, но должна служить ориентиром того, что может охватывать прикладной курс машинного обучения. Автор использует ее в качестве справочного материала для курсов по анализу данных и машинному обучению, который он преподает. Автор книги Мэтт Харрисон считает, что его книга - лучший сборник ресурсов и примеров для решения задач прогнозного моделирования, если у вас есть структурированные данные.
Дополнительная информация
ISBN 978-5-907203-17-4
Автор Харрисон Мэтт
Издательство Диалектика
Год 2020
Переплет обл
Формат 84х108/32
Стр. 320
ID 04Л4-30
ID2 749460
У этого товара нет ни одного отзыва. Вы можете стать первым.
Хочешь узнавать про акции и скидки первым?
Я согласен с условиями Пользовательского соглашения