В книге рассмотрены теоретические основы моделирования искусственных нейронных сетей различной архитектуры. Приведены алгоритмы обучения однослойных и многослойных сетей прямого распространения, самоорганизующихся и рекуррентных сетей. Рассмотрено моделирование многоагентных систем на основе эволюционирующих нейронных сетей. Приводятся оригинальные методики визуализации внутреннего состояния обученной нейронной сети и решения задач классификации, категоризации, прогнозирования, восстановления зашумленной информации. Даны методологические основы проектирования нейросетевых модулей решения задач в виде компьютерных приложений. Приведены описания структур, интерфейсов и компьютерные коды основных блоков нейросетевых приложений. Описаны методы комбинирования градиентных и стохастических алгоритмов обучения для повышения эффективности решения практических задач. Приводятся оригинальные методики решения задач распознавания образов, прогнозирования курсов валют, задач медицинской...
В книге рассмотрены теоретические основы моделирования искусственных нейронных сетей различной архитектуры. Приведены алгоритмы обучения однослойных и многослойных сетей прямого распространения, самоорганизующихся и рекуррентных сетей. Рассмотрено моделирование многоагентных систем на основе эволюционирующих нейронных сетей. Приводятся оригинальные методики визуализации внутреннего состояния обученной нейронной сети и решения задач классификации, категоризации, прогнозирования, восстановления зашумленной информации. Даны методологические основы проектирования нейросетевых модулей решения задач в виде компьютерных приложений. Приведены описания структур, интерфейсов и компьютерные коды основных блоков нейросетевых приложений. Описаны методы комбинирования градиентных и стохастических алгоритмов обучения для повышения эффективности решения практических задач. Приводятся оригинальные методики решения задач распознавания образов, прогнозирования курсов валют, задач медицинской диагностики. Рассмотрены методы и способы оценки эффективности разработанных нейросетевых моделей.
Издание может быть использовано в курсах "Проектирование интеллектуальных систем", "Компьютерные технологии в медико-биологической практике", "Автоматизация обработки медицинской информации", "Управление в биотехнических системах". Может быть, полезно также для научных работников, специализирующихся в области разработки автоматизированных систем искусственного интеллекта и когнитивного моделирования процессов принятия решений.
ISBN | 978-5-8114-8264-1 |
Автор | Хливненко Любовь Владимировна |
Издательство | Лань |
Год | 2019 |
Переплет | 7Бц |
Формат | 84х108/32 |
Стр. | 200 |
Серия | Учебники для вузов. Специальная литература |
ID | 04Л3-30 |
ID2 | 719103 |
У этого товара нет ни одного отзыва. Вы можете стать первым.