Монография посвящена приложению методов функционального анализа к вопросам качественной теории дифференциальных уравнений. Изложен алгоритм приведения дифференциальной краевой задачи к операторному уравнению. Выполнено исследование решений операторных уравнений специального вида в пространствах, полуупорядоченных при помощи конуса, где ограниченность элементов этих пространств понимается как сравнимость их с определенным фиксированным масштабным элементом экспоненциального типа. Найдены представления решений операторных уравнений в виде контурных интегралов, доказаны теоремы существования и единственности таких решений. Получены спектральные критерии ограниченности решений операторных уравнений и, как следствие, достаточные спектральные признаки ограниченности решений дифференциальных и дифференциально-разностных уравнений в банаховом пространстве. Результаты, полученные для операторных уравнений с операторами и произведением вольтерровых операторов, позволили распространить на... 
Монография посвящена приложению методов функционального анализа к вопросам качественной теории дифференциальных уравнений. Изложен алгоритм приведения дифференциальной краевой задачи к операторному уравнению. Выполнено исследование решений операторных уравнений специального вида в пространствах, полуупорядоченных при помощи конуса, где ограниченность элементов этих пространств понимается как сравнимость их с определенным фиксированным масштабным элементом экспоненциального типа. Найдены представления решений операторных уравнений в виде контурных интегралов, доказаны теоремы существования и единственности таких решений. Получены спектральные критерии ограниченности решений операторных уравнений и, как следствие, достаточные спектральные признаки ограниченности решений дифференциальных и дифференциально-разностных уравнений в банаховом пространстве. Результаты, полученные для операторных уравнений с операторами и произведением вольтерровых операторов, позволили распространить на некоторые системы уравнений в частных производных известные спектральные критерии устойчивости решений по А.М. Ляпунову, а также обобщить теоремы об экспоненциальной характеристике.
Результаты монографии могут быть полезны при изучении линейных механических и электрических систем, в задачах дифракции электромагнитных волн, в вопросах теории автоматического управления и др.
Предназначена для научных работников, аспирантов, студентов, изучающих функциональный анализ и его приложения к операторным и дифференциальным уравнениям.
			
				    
        
			
		
					| ISBN | 978-5-16-015846-4 | 
| Автор | Орлик Любовь Константиновна | 
| Год | 2020 | 
| Переплет | обл | 
| Издательство | ИНФРА-М | 
| Формат | 60х90/16 | 
| Стр. | 296 | 
| Серия | Высшее образование. Бакалавриат | 
| ID | 04Л2-29 | 
| ID2 | 748425 | 
У этого товара нет ни одного отзыва. Вы можете стать первым.
                        
